On symmetry of nonnegative solutions of elliptic equations

نویسنده

  • P. Poláčik
چکیده

We consider the Dirichlet problem for a class of fully nonlinear elliptic equations on a bounded domain Ω. We assume that Ω is symmetric about a hyperplane H and convex in the direction perpendicular to H. By a well-known result of Gidas, Ni and Nirenberg and its generalizations, all positive solutions are reflectionally symmetric about H and decreasing away from the hyperplane in the direction orthogonal to H. For nonnegative solutions, this result is not always true. We show that, nonetheless, the symmetry part of the result remains valid for nonnegative solutions: any nonnegative solution u is symmetric about H. Moreover, we prove that if u 6≡ 0, then the nodal set of u divides the domain Ω into a finite number of reflectionally symmetric subdomains in which u has the usual Gidas-Ni-Nirenberg symmetry and monotonicity properties. We also show several examples of nonnegative solutions with a nonempty interior nodal set. AMS Classification: 35J60, 35B06, 35B05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discussion of nonnegative solutions of elliptic equations on symmetric domains∗

In this note we summarize our recent results on nonnegative solutions of nonlinear elliptic equations on reflectionally symmetric domains. We discuss symmetry properties of such solutions, the structure of their nodal set, and the existence and multiplicity of solutions with a nontrivial nodal set.

متن کامل

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin

We consider the Dirichlet problem for semilinear elliptic equations on a smooth bounded domain Ω. We assume that Ω is symmetric about a hyperplane H and convex in the direction orthogonal to H. Employing Serrin’s result on an overdetermined problem, we show that any nonzero nonnegative solution is necessarily strictly positive. One can thus apply a well-known result of Gidas, Ni and Nirenberg t...

متن کامل

Monotonicity and Symmetry of Positive Solutions to Nonlinear Elliptic Equations : Local Moving Planes and Unique Continuation

We prove local properties of symmetry and monotonicity for nonnegative solutions of scalar eld equations with nonlinearities which are not Lipschitz. Our main tools are a local Moving Planes method and a unique continuation argument which is connected with techniques used for proving the uniqueness of radially symmetric solutions.

متن کامل

The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations

This paper is concerned about maximum principles and radial symmetry for viscosity solutions of fully nonlinear partial differential equations. We obtain the radial symmetry and monotonicity properties for nonnegative viscosity solutions of F ( D2u ) + u = 0 in R (0.1) under the asymptotic decay rate u = o(|x|− 2 p−1 ) at infinity, where p > 1 (Theorem 1, Corollary 1). As a consequence of our s...

متن کامل

Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains

We consider a semilinear elliptic equation on a smooth bounded domain Ω in R2, assuming that both the domain and the equation are invariant under reflections about one of the coordinate axes, say the y-axis. It is known that nonnegative solutions of the Dirichlet problem for such equations are symmetric about the axis, and, if strictly positive, they are also decreasing in x for x > 0. Our goal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010